If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x+4=)
We move all terms to the left:
2x^2+4x+4-())=0
We add all the numbers together, and all the variables
2x^2+4x=0
a = 2; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·2·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*2}=\frac{-8}{4} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*2}=\frac{0}{4} =0 $
| 8+6(1+9f)=-33 | | X2+1x-90=0 | | -4(8h-5)=-6 | | (11-4x)²=0 | | 6+12x=90 | | 2/3z=4/9 | | (x-2)²-9=16 | | (x+1)/2-3=1 | | 17+3n=-4 | | -x²+2x+150=0 | | 10x+24=88,5x+24=0 | | 10x+24=885x+24=0 | | x÷8+11=19 | | 3(m+2)-3(3-m=5 | | m3–3m2+4m–2=0 | | y=110+0.5(y-(20))+35 | | 0.20x=3210 | | 0.20x=3110 | | 0.20x=3010 | | 0.20x=3410 | | 0.60x=3410 | | y=97.5+0.75(y-(20))+40 | | 2a+10=-30 | | 0.60x=9570 | | 0.60x=9560 | | 0.20x=3400 | | 0.60x=9500 | | 4(a-3)+2(a-1)=10 | | 0.20x=3100 | | 0.20x=3000 | | 0.20x=2500 | | 0.80x=2500 |